VARIMETER

Function Diagram

Circuit Diagram

IL 9837, SL 9837

- According to IEC/EN 60 255-1
- Overfrequency or underfrequency monitoring of AC voltages
- Adjustable response value $f_{\text {min. }}$ or $f_{\max } 5 \ldots 200 \mathrm{~Hz}$ or $15 \ldots 600 \mathrm{~Hz}$
- Adjustable hysteresis
- Large voltage range of the measuring input (nominal voltage AC 24 ... 440 V)
- De-energized on trip
- LED indication for auxiliary voltage, measuring voltage and contact position
- 1 changeover contact
- As option for frequency inverters with a range of $1 \ldots 300 \mathrm{~Hz}$
- 2 changeover contacts available on request
- As option adjustable start-up delay available
- Energized on trip function available on request
- Devices available in 2 enclosure versions:

IL 9837: depth 58 mm , with terminals at the bottom for installation systems and industrial distribution systems according to DIN 43880
SL 9837: depth 98 mm , with terminals at the top for cabinets with mounting plate and cable duct

- 35 mm width

Approvals and Markings

$$
\text { * only for IL } 9837
$$

Application

- Frequency monitoring of A.C. voltages
- Monitoring of the rotor frequency of slipring motors
- Control / monitoring of drives in crane systems
- Frequency monitoring in frequency inverters (IL 9837.11/500)

Function

The frequency to be monitored is applied to measuring input IN1-IN2. The measuring circuit is electrically separated from the auxiliary voltage input A1-A2, to which the supply voltage of the frequency relay is connected.

The measured frequency is compared to a response value to be set at the unit.

In overfrequency mode, the output relay switches into alarm position when the preset response value is exceeded. When the system frequency once more falls below the response value minus the preset hysteresis, the output relay will switch back into normal position.

In underfrequency mode, the output relay switches into alarm position when the actual value falls below the preset response value. When the system frequency once more exceeds the response value plus hysteresis, the output relay will switch back into normal position.

If de-energized on trip is selected, the output relay is energized (11-14 closed) in normal status.
If energized on trip is selected, the output relay is energized (11-14 closed) in alarm status.

Indicators

Upper LED:
applied
Yellow LED:
green light is permanently on, when only the auxiliary voltage has been applied to A1-A2, green-red alternating light, when measuring frequency has also been to IN1-IN2
is on, when the output relay is energized (contacts 11-14 closed)

Notes

Monitoring mode underfrequency or overfrequency
The mode can be selected by means of the slide switch at the front of the unit. The operating mode de-energized or energized on trip as well as the response value do not change.

Setting of the hysteresis
With input frequencies < 15 Hz (4 Hz with variant IL 9837.11/500), the hysteresis should not be set to minimum values to avoid cycling of the output relay.

In the "underfrequency" monitoring mode ("< f"), with input frequencies close to the end of the respective range, hysteresis can only be set to a maximum of $4 \ldots 10 \%$ for proper resetting; this is due to reasons of the switching operation. If applicable, select the next higher frequency range.

Variant IL 9837.11/500 for frequency inverter
This variant can be used with frequency inverter to monitor the frequency of $1 \ldots 300 \mathrm{~Hz}$ generated by the frequency inverter. It has a specifically dimensioned measuring input with low pass character to suppress the cycle frequency of the inverter. Simultaneously, the input sensitivity is adjusted to the voltage/frequency characteristic of the inverter.

Technical Data

Measuring Circuit

Measuring input:
Nominal voltage \mathbf{U}_{N} :
Voltage range:
Input resistance:approx.
Frequency range:

Response value

infinitely adjustable:
Hysteresis
infinitely adjustable:
Measuring input:
Max. input voltage:
Min. measuring voltage:
Input resistance:
Frequency range:

Response value

 infinitely adjustable: Hysteresisinfinitely adjustable:

IN1-IN2
AC $24 \ldots 440 \mathrm{~V}$
$0.8 \ldots 1.1 U_{N}$
$1 \mathrm{M} \Omega$
5 ... $20 \mathrm{~Hz}, 15 \ldots 60 \mathrm{~Hz}, 50 \ldots 200 \mathrm{~Hz}$ or $15 \ldots 60 \mathrm{~Hz}, 45 \ldots 180 \mathrm{~Hz}, 150 \ldots 600 \mathrm{~Hz}$ selected with rotary switch
$1: 4$ in each frequency range
$1 . .20 \%$ of the set response value
IL 9837.11/500
AC 500 V
approx. AC 10 V with 1 Hz ... AC 220 V with 300 Hz , see diagramm M8681 approx. $700 \mathrm{k} \Omega$
1 ... $10 \mathrm{~Hz}, 5 \ldots 50 \mathrm{~Hz}, 30 \ldots 300 \mathrm{~Hz}$ selected with rotary switch

1 : 10 in each frequency range
1 ... 20% of the set response value

Technical Data

Auxiliary Circuit

Nominal voltage \mathbf{U}_{H} :
Voltage range
AC:
DC:
Nominal consumption
AC:
DC:
Frequency range
AC:

Output

Contacts:
Thermal current $\mathrm{t}_{\text {th }}$:
Switching capacity
to AC 15
NO contact: $\quad 3 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V} \quad$ IEC/EN 60 947-5-1
NC contact: $1 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}$ IEC/EN 60 947-5-1
to DC 13:
NO contact: $\quad 1 \mathrm{~A} / \mathrm{DC} 24 \mathrm{~V} \quad$ IEC/EN 60 947-5-1
NC contact:

Contact life:

to AC 15 at $1 \mathrm{~A}, \mathrm{AC} 230 \mathrm{~V}$:
Short circuit strenght
max. fuse rating:
Mechanical life:

General Data

Nominal operation:	Continous
Temperature range:	$-20 \ldots+60^{\circ} \mathrm{C}$

emperature range:

Clearance and creepage distances

Rated rated impulse voltage voltage /
Pollution degree: $\quad 4 \mathrm{kV} / 2$
EMC
Electrostatic discharge (ESD):
8 kV (air)
IEC/EN 61 000-4-2
Fast transients: 2 kV
Surge
between
supply lines:
HF voltage driven:
Interference suppression:
Degree of protection
Housing:
Terminals:
Housing:

Vibration resistance:

Climate resistance:
Terminal designation:
Wire connection:

Wire fixing:
Mounting:
Net weight
IL 9837:
SL 9837:

1 kV
10 V
Limit value class B
IEC/EN 61 000-4-5
IEC/EN 61 000-4-5
P 40 IEC/EN 60529

IP 20
-
Thermoplast with V0 behavio
according to UL Subject 94
Amplitude 0.35 mm
Frequency 10 ... 55 Hz IEC/EN 60 068-2-6 20/060/04

IEC/EN 60 068-1 DIN EN 50005
$2 \times 2.5 \mathrm{~mm}^{2}$ massive, or
$2 \times 1.5 \mathrm{~mm}^{2}$ stranded wire ferruled
DIN 46 228-1/-2/-3
Screw terminals with self-lifting
clamping piece IEC/EN 60 999-1 DIN rail

IEC/EN 60715
approx. 137 g
approx. 164 g

Dimensions

Width \mathbf{x} height \mathbf{x} depth

IL 9837:	$35 \times 90 \times 59 \mathrm{~mm}$
SL 9837:	$35 \times 90 \times 98 \mathrm{~mm}$

CCC-Data for IL 9837

Thermal current I_{th} :

Switching capacity

to AC 15:
5 A / AC 230 V
IEC/EN 60 947-5-1
to DC 13:
$2 \mathrm{~A} / \mathrm{DC} 24 \mathrm{~V}$
IEC/EN 60 947-5-1
Technical data that is not stated in the CCC-Data, can be found in the technical data section.

Standard Type

IL $9837.115 \ldots 200 \mathrm{~Hz} \mathrm{U}_{\mathrm{H}}$ AC 230 V Hyst. $1 \ldots 20$ \%
Article number: 0056555

- De-energized on trip
- Selection of overvoltage or undervoltage
- Selectable frequency range: $5 \ldots 20 \mathrm{~Hz}, 15 \ldots 60 \mathrm{~Hz}, 50 \ldots 200 \mathrm{~Hz}$
- Response value:Infinitely adjustable 1:4
- Auxiliary voltage U_{H} :

AC 230 V

- Hysteresis:

1 ... 20 \% adjustable

- Output contact:

1 changeover contact
35 mm

Varianten

IL 9837.11/500:

IL 9837.11/_ _4:
Input designed for frequency inverters Selection of overfrequency or underfrequency
Selectable frequency range
1 ... $10 \mathrm{~Hz}, 5 \ldots 50 \mathrm{~Hz}, 30 \ldots 300 \mathrm{~Hz}$
Response value infinitely adjustable 1:10
Auxiliary voltage $U_{H} A C 230 \mathrm{~V}$
De-energized on trip
Output contact 1 changeover contact with adjustable start-up delay $0.1 \ldots 20$ s

Ordering example for variants

Characteristic

Typical input sensitivity of the measuring input with variant IL 9837.11/500

Connection Example

