VARIMETER
 Neutral Monitor
 IL 9069, SL 9069

Function Diagram

Circuit Diagram

IL 9069.12, SL 9069.12
Connection Terminals

Terminal designation	Signal description
L1, L2, L3, N	Voltage supply / Measuring inputs
$11,12,14$	Changeover contact (output relay)
$21,22,24$	Changeover contact (2nd output relay)

Translation of the original instructions
 11 - 10

- According to IEC/EN 60255-1
- Detection of
- missing neutral in the system
- broken neutral on IL/SL 9069
- neutral exchanged against phase
- Detection of phase failure also with disconnected load
- For 3-phase systems
- De-energized on trip
- LED indicator for operation/state of output contacts
- Single phase connection possible
- Without auxiliary voltage
- 2 cangeover contacts
- Optionally with adjustable asymmetry detection and on delay
- Devices available in 2 enclosure version:

IL 9069: depth 59 mm with terminals at the bottom for installations systems and industrial distribution systems according to DIN 43880
SL 9069: depth 98 mm with terminals at the top for cabinets with mounting plate and cable duct

- Width 35 mm

Approval and Markings
E $\underbrace{\text { Coner only for IL } 9069}_{\text {A025518 }}$

Application

Neutral monitoring in 3-phase systems

In3-phase systems with neutral often also single phase loads are connected between phase and neutral. If the neutral is missing in a system like this, unsymmetric voltages occur, that could damage single phase consumers, if the voltage rises to high. Also consumers can stop to work if the phaseneutral voltage gets too low. The IL 9069 detects this problem and can switch off the system immediately.

To monitor mobile systems that are connected via plug connectors. On mobile systems that are connected by a very long cable, voltage drop can cause a significant asymmetry also during normal operation. For this case we recommend the variant IL/SL 9069.12/500 with an adjustable asymmetry setting (approx. 5 ...15\%) and an additional response delay.

Function

All 3 phase voltages are measured between phase input L1, L2, L3 and the neutral N . If all 3 phases and the neutral are connected correctly and the asymmetry in good state, the green LED is on and the output relay is energized. If the neutral or one phase is missing or the neutral is exchanged with a phase or the asymmetry exceeds the setting value, the output relay de-energises immediately or after the adjusted time delay (with IL/SL 9069.12/500) and the green LED goes off. The time delay on IL/SL 9069.12/500 is only active when the voltage on terminals L3-N is at least $0,7 \mathrm{U}_{\mathrm{N}}$ as the unit is supplied from these terminals.

Indication

LED green:
On, when output relay activated (contact 11-14 and 21-24 are closed)

Technical Data

Input

Nominal voltage U_{N} :
Max. overload:
Voltage range:
Permissible asymmetry
of the phase
IL/SL 9069.12:
IL/SL 9069.12/500:
Nominal consumption
Nominal frequency:
Frequency range:
Input current at U_{N} :
On delay
L/SL 9069.12:
IL/SL 9069.12/500:

3/N AC 400 / 230 V
AC 440 V on all measuring inputs
$0.7 \ldots 1.1 \mathrm{U}_{\mathrm{N}}$

Max. 5 \%
Adjustable approx. 5 ... 15 \%
Approx. 6 VA (L3-N)
$50 / 60 \mathrm{~Hz}$
$45 \ldots 65 \mathrm{~Hz}$
L1-N, L2-N: approx. 1.5 mA
L3-N: approx. 25 mA
Approx. 100 ms
Approx. 0.1 ... 20 s , adjustable

Output
Contact
IL 9069.12, SL 9069.12:
Contact material:
2 changeover contacts
Measured nominal voltage:
AgNi 90/10
Thermal current $I_{\text {th }}$:
Switching capacity
to AC 15:
to DC 13:
Electrical life
to AC 15 at 1 A, AC 230 V:
Short circuit strength
max. fuse:
Mechanical life:
AC 250 V
4 A
3 A / AC 230 V
IEC/EN 60947-5-1 2 A / DC 24 V

IEC/EN 60947-5-1
$\geq 5 \times 10^{5}$ switch. cycl. IEC/EN 60947-5-1
4 A gG / gL IEC/EN 60947-5-1 $\geq 30 \times 10^{6}$ switch. cycles

General Data

Operating mode:
Temperature range
Operation
Strorage:
Relative air humidity:
Altitude:
Clearance and creepage
distances
Rated impulse voltage /
pollution degree:
EMC
Electrostatic discharge
HF irradiation
80 MHz ... 1 GHz :
1 GHz ... 2.5 GHz : 2.5 GHz ... 2.7 GHz:

Fast transients:
Surge voltages
between
wires for power supply: between wire and ground: Interference suppression:
Degree of protection
Housing:
Terminals:
Housing:
Vibration resistance:
Climate resistance:
Terminal designation:
Wire connection:

Stripping length:
Wire fixing:
Fixing torque:
Mounting:
Weight
IL 9069:
SL 9069:

Continuous operation
$-25 \ldots+60^{\circ} \mathrm{C}$
$-25 \ldots+80^{\circ} \mathrm{C}$
93% at $40^{\circ} \mathrm{C}$
< 2000 m

4 kV / 2
IEC 60664-1
8 kV (air)
IEC/EN 61000-4-2
$10 \mathrm{~V} / \mathrm{m}$
$3 \mathrm{~V} / \mathrm{m}$
IEC/EN 61000-4-3
IEC/EN 61000-4-3
$3 \mathrm{~V} / \mathrm{m} \quad$ IEC/EN 61000-4-3
4 kV
IEC/EN 61000-4-4

2 kV
2 kV
IEC/EN 61000-4-5
IEC/EN 61000-4-5
Limit value class B
EN 55011
IP 40 IEC/EN 60529
IP 20 IEC/EN 60529

Thermoplastic with V0 behaviour
according to UL subject 94
Amplitude 0.35 mm
frequency 10 ... 55 Hz , IEC/EN 60068-2-6
20/060/04 IEC/EN 60068-1
EN 50005
$2 \times 2.5 \mathrm{~mm}^{2}$ solid or
$2 \times 1.5 \mathrm{~mm}^{2}$ stranded ferruled
DIN 46228-1/-2/-3/-4
10 mm
Flat terminals with self-lifting
clamping piece IEC/EN 60999-1
0.8 Nm

DIN rail IEC/EN 60715
110 g
137 g

Dimensions
Width \mathbf{x} height \mathbf{x} depth
IL 9069:
SL 9069: $35 \times 90 \times 98 \mathrm{~mm}$
E. DOLD \& SÖHNE KG • D-78114 Furtwangen • POBox 1251 •Telephone (+49) 7723/654-0 •Telefax (+49) 7723/654-356

