Monitoring Technique

VARIMETER

Frequency Relay
BA 9837, AA 9837, AA 9838

Function Diagram

- According IEC/EN 60255-1
- Detection of under- or overfrequency
- Adjustable response value
- Optionally 1 or 2 changeover contacts
- Width 45 mm

Approvals and Markings

C ϵ

Application

The frequency relay can be used especially in applications where the rotor frequency of a slip-ring motor must be measured. The rotor frequency is reciprocal proportional to the speed (see diagram rotor frequency at contercurrent braking).
This behaviour allows to find speed depending switching values and can be used for start up and contercurrent braking of motors on cranes.

Function

The device compares 2 frequencies. The measuring frequency is compared to an internally generated, settable frequency reference.

With bridge on $\mathrm{X} 1-\mathrm{X} 2$ the output relay deenergises when the measuring frequency is higher then the setted frequency. The relay energises again when the measuring frequency drops under the setted frequency x hysteresis.

With bridge on X2-X3 the output relay energises when the measuring frequency is higher then the setted frequency. The relay deenergises again when the measuring frequency drops under the setted frequency x hysteresis.

An indicating LED shows that the frequency signal is connected. At low frequency the LED flashes. A second LED indicates the state of the output relay.

Notes

Terminals X1, X2, X3 should only be connected together with the corresponding wire links. Do not connect external voltage, neutral or ground.
The measuring input is designed for an amplitude of AC 8... 500 V. Higher values AC $12 \ldots 800 \mathrm{~V}$ can be achieved by connecting a series resistor, type IK 5110 into the measuring circuit either to terminal n or o .

BA 9837.11,
AA 9837.11, AA 9838.11

BA 9837.12,
AA 9837.12

Connection Terminals
Terminal designation Signal designation A1 $+/ \mathrm{L}$ A2 $-/ \mathrm{N}$ n, o Measuring input X1, X3 Control input X2 Control output $11,12,14,21,22,24$ Changeover contacts l

Technical Data

Input
Measuring input:
Setting range:
BA 9837, AA 9837:

AA 9838:
Setting:
Response value:
Hysteresis:
BA 9837, AA 9837:
AA 9838:
Accuracy:
Temperature influence: Influence of auxiliary supply:

AC Amplitude AC 8 ... 500 V r.m.s internal resistance: > $400 \mathrm{k} \Omega$

Auxiliary Circuit
Auxiliary voltage U_{H} :
BA 9837, AA 9837:
AA 9838:
Voltage range of U_{H} :
Nominal consumption U_{H} :
Nominal frequency of $\mathbf{U}_{H^{*}}$: $\quad 50 / 60 \mathrm{~Hz} \pm 5 \%$
Output

Contacts

BA 9837.11, AA 9837.11,
AA 9838.11:
BA 9837.12, AA 9837.12:
Switching delay:
setting range (Hz)
5-15
10-30
20-60
20-80
30-90
40-120
100-300
200-600

AC 24, 42, 110, 127, 230, 240 V
AC 48, 110, 230 V
$0.8 \ldots 1.1 U_{H}$
<3VA
$5 \ldots 15 \mathrm{~Hz} \quad 40 \ldots 120 \mathrm{~Hz}$
... 300 Hz
20 ... $60 \mathrm{~Hz} \quad 200$... 600 Hz
30 ... 90 Hz
20 ... 80 Hz
infinite on absolute scale
\geq setting value
0.8 ... 0.97 of response value
0.96 of response value
$< \pm 1 \%$
$< \pm 0.15 \% /{ }^{\circ} \mathrm{C}$
$< \pm 0.5 \%$ at $0.8 \ldots 1.1 U_{N}$

Variants

BA 9837.12/010:
BA 9837.12/020:
AA 9837.12/010:
AA 9837.12/020:

Frequency relay with 2 changeover contacts and internal bridges (X1, X2, X3)
with internal bridge X1-X2
with internal bridge X2-X3
with internal bridge X1-X2
with internal bridge X2-X3
Ordering example for variants

Accessories

IK 5110:

Series resist or for higher measuring voltage AC 12 ... 800 V eff. Article number: 0015751

Characteristics

Measuring sensitivity
The diagram shows the sensitivity of the input of the frequency relay AA 9837. If the measuring voltage is lower then the curve values the frequency cannot be measured anymore. Please note.
Superimposed interference voltages on the measuring input with a ration.

above the curve values can influence the measuring results.
f
-

- frequency on input
- highest value of the actual frequency range

Example:
$\mathrm{U}_{\text {meß }}$: 10 V ; measuring frequency: $\mathrm{f}=4800 \mathrm{~Hz}$
chosen frequency range: $\quad 100-300 \mathrm{~Hz}, \quad f_{\max }=300 \mathrm{~Hz}$

$$
\frac{f}{f_{\max }}=\frac{4800 \mathrm{~Hz}}{300 \mathrm{~Hz}}=16
$$

The meauring frequency is detected, as the measuring voltage is above the response curve.

t_{1} nominal speed reached
t_{2} start braking
t_{3}^{2} standstill (end of braking to avoid reverse start)
Rotor frequency at countercurrent braking

Braking:

When reversing the phases for braking the rotor frequency changes and drops proportional to the speed to mains frequency. E.g. when the rotor frequency is 5 Hz at nominal speed, it to 95 Hz . When the motor is at stand still the rotor frequency is nominal frequency. At this point the frequency relay has to give the signal to stop braking, before the motor starts up in the opposite direction.

Connection Example

Motor control with starting resistance
Start:
To achieve an optimum speed depending starting inertia, different starting resistors are switched into the rotor circuit, when certain speed values are reached. Often this procedure is controlled with timers, but with small loads the motor reaches the speed to switch over much faster then with high loads and the motor still runs on the lower stage. When the switching of the resistors is controlled speed depending by frequency relays, the start up cycles can be shortened and the plant can be used more effective.

